Publications

Google Scholar
  1. Zietkiewicz, P, Kosmidis, I (2024). Bounded-memory adjusted scores estimation in generalized linear models with large data sets. Statistics and Computing, 34, 138. DOI ArViV Supplementary Material:
  2. The widespread use of maximum Jeffreys'-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (2021, Biometrika), who show that the resulting estimates are always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically as a proportion of the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing O(n) quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. Both procedures can also be readily adapted to fit generalized linear models when distinct parts of the data is stored across different sites and, due to privacy concerns, cannot be fully transferred across sites. We assess the procedures through a real-data application with millions of observations.

  3. (Under review) Kosmidis, I, Zietkiewicz, P (2023). Jeffreys-prior penalty for high-dimensional logistic regression: A conjecture about aggregate bias. ArXiV Supplementary Material:
  4. Firth (1993, Biometrika) shows that the maximum Jeffreys' prior penalized likelihood estimator in logistic regression has asymptotic bias decreasing with the square of the number of observations when the number of parameters is fixed, which is an order faster than the typical rate from maximum likelihood. The widespread use of that estimator in applied work is supported by the results in Kosmidis and Firth (2021, Biometrika), who show that it takes finite values, even in cases where the maximum likelihood estimate does not exist. Kosmidis and Firth (2021, Biometrika) also provide empirical evidence that the estimator has good bias properties in high-dimensional settings where the number of parameters grows asymptotically linearly but slower than the number of observations. We design and carry out a large-scale computer experiment covering a wide range of such high-dimensional settings and produce strong empirical evidence for a simple rescaling of the maximum Jeffreys' prior penalized likelihood estimator that delivers high accuracy in signal recovery in the presence of an intercept parameter. The rescaled estimator is effective even in cases where estimates from maximum likelihood and other recently proposed corrective methods based on approximate message passing do not exist.